

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE, HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND INTEGRAL CALCULUS

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

SECOND YEAR **SECOND** SEMESTER EXAMINATION FOR DIPLOMA IN INFORMATION AND COMMUNICATION TECHNOLOGY

AMM 057: LINER ALGEBRA

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer Question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION QUESTION ONE (30 MARKS)

a)	What is a rank of a matrix?	(1mark)
b)	Find the rank of matrix A = $\begin{pmatrix} 1 & 2 & 4 & 4 \\ 3 & 4 & 8 & 0 \end{pmatrix}$	(3 marks)
c)	Let there be two vectors $a=(6, 2, -1)$ and $B=(5, -8, 2)$	
	i. Find the dot product of the vectors.	(2 marks)
	ii. Find the length of vector AB .	(2 marks)
	iii. Find the angle between the vectors.	(4 marks)
	iv. Determine whether the vectors (1,2 and (-5,3) are linearly dependent.	(2 marks)
d)	Given A= $\begin{pmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \end{pmatrix}$ and B= $\begin{pmatrix} 3 & 4 & 3 \\ 0 & 2 & 9 \\ 4 & 1 & 1 \end{pmatrix}$. Find BA'A.	(4 marks)
e)	Use the Cramer rule to solve the following simultaneous equation.	(4 marks)
	12x + 3y = 15	
	2x - 3y = 13	
f)	Let $A = \begin{pmatrix} 5 & -3 \\ 2 & 2 \end{pmatrix}$ find A^{-1}	(3 marks)
g)	Solve the following simultaneous equation using the Gaussian elimination me	ethod.
		(5 marks)

$$2x + y + 2z = 10$$
$$x + 2y + z = 8$$
$$3x + y - z = 2$$

SECTION TWO: ANSWER ANY TWO QUESTIONS

QUESTION TWO (20 MARKS)

- a) What is linear transformation? State the conditions for linear transformation. (3marks)
- **b**) Let $M = \begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix}$
 - i. Write an expression for $T_{m.}$ (2 marks)
 - ii. Find $T_m(1,0)$ and $T_m(0,1)$. (4 marks)
 - iii. Find all points (x, y) such that $T_m(x, y) = (1, 0)$. (2 marks)

c)	Find the distance between the vectors $(2, 3, 5)$ and $(2, 0, -9)$.	(4 marks)
d)	Find the cross product of the vectors $(2, 3, 5)$ and $(2, 0, -9)$.	(3 marks)
e)	Find the sum of the vector $(2, 3, 5)$ and $(2, 0, -9)$.	(2 marks)

QUESTION THREE (20 MARKS)

- a) Given $P = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix} Q = \begin{pmatrix} 2 & 0 \\ 1 & 3 \end{pmatrix}$ and $R = \begin{pmatrix} 3 & 0 \\ 2 & 2 \end{pmatrix}$ Find i. 3P - 2(Q + R) (3 marks) ii. $P^2 + \frac{1}{2}Q$ (3 marks) iii. $Q^{-1}R + 2P$ (5 marks) b) Musa spent sh. 207 to buy seven exercise books and four pens while Mary spent sh.165 to
- b) Musa spent sn. 207 to buy seven exercise books and four pens while Mary spent sn. 165 to buy five exercise books and five pens of the same type.
 - i. Form a simultaneous equation. (2 marks)
 - ii. Use the matrix methods to find the cost of one exercise book and one pen. (5 marks)
 - iii. Find the cost of buying ten such exercise books and two pens. (2 marks)

QUESTION FOUR (20 MARKS)

a) What is the inverse of the transformation F: $R^2 \rightarrow R^2$ given by F(x, y) = (x + 3y, x + 5y)?

(4 marks)

b) Find a linear transformation $\mathbb{R}^2 \rightarrow \mathbb{R}^2$ that maps (1, 1) to (-1, 4) and (-1, 3) to (-7, 0).

(5 marks)

- c) Find the angle between $\mathbf{a} = i + 4j + 8k$ and $\mathbf{b} = 5i + 4j + 3k$ (3 marks)
- d) Two cinema theatres A and B carry 700 people each. Each of them carries 300 people upstairs and 400 downstairs. Theatre A charges sh150 for upstairs and sh.100 for downstairs. Theatre B charges sh.140 upstairs and sh. 90 downstairs. Using matrix, calculate the total collections for each theatre during a show when all the seats are booked. (4 marks)
- e) If matrix $A = \begin{pmatrix} 1 & 2 \\ -5 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 6 & 8 \\ 5 & 1 \end{pmatrix}$. Find matrix C if A=CB. (4 marks)