

MURANG'A UNIVERSITY OF TECHNOLOGY SCHOOL OF ENGINEERING AND TECHNOLOGY

UNIVERSITY ORDINARY EXAMINA	ATION
2023/2024 ACADEMIC YEAR	\
. YEAR SEMESTER EXAMINATI	ON FOR

DEPARTMENT OF

EET 300 – DIGITAL ELECTRONICS

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

- a. Convert the following into binary
 - i. 2/3 to six places of decimals $(1^{1/2}$ marks)
 - ii. to actal and hexadecimal (1^{1/4}marks)
 - iii. Convert 110010_2 to BCD. $(1^{1/2}$ marks)
 - iv. Convert 110010_2 to grey code $(1^{1/2} \text{ marks})$
- b. Express the following in Decimal:
 - i. 1011.0101₂ (2marks)
 - ii. 16.5₁₆ (2marks)
 - iii. 26.24₈ (2marks)
- c. Given $A = 1100_2$ and $B = 111_2$, perform:
 - i. A + B $(1^{1/2} marks)$
 - ii. A-B Using one's complement, (2marks)
 - iii. A-B Using two's complement (2marks)
 - iv. B-A $(1^{1/2}$ marks)
- d. Simplify the Boolean function to the minimum number of literals:
 - i. $AB + AB^1$ (1^{1/2}marks)
 - ii. $ABC^1 + AB + ABC$ (2marks)
- e. A RAM gas 10 address lines and 16 data input/output lines, Determine the capacity of this RAM in K Bytes. (2marks)
 - i. Name three properties of a memory. (3marks)
 - ii. Determine the base of the following operations to be time $\frac{54}{4} = 13$
 - -24+17 = 40 (2marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

- a. .
- i. What is the difference between: term and a literal (2marks)
- ii. Comonical form of a Boolean function. (2marks)

b.

i. Simplify the following Boolean functions using k-map

$$T_1 = ABC^1 + A^1B^1C + A^1B^1C = A^1BC^1$$
 (3marks)

$$T_2 = AB^1C^1 + ABC + ABC + ABC$$
 (3marks)

- ii. Implement the simplified Boolean expressions for T₁ and T₂ as functions A, B, C.
- c. A MUT student can register for a specific course only if that student satisfy the following conditions:-
 - 1) Has completed at least 15 units AND is an Engineering student, AND in good standing, OR
 - 2) Has completed at least 15 units AND and Engineering student, AND has departmental approval OR
 - 3) Has completed fewer that 15 units AND an Engineering Student, AND met of good standing, OR
 - 4) Is of good standing AND has department approval, OR
 - 5) Is an Engineering student AND does not have departmental approval.
 - i. Come up with overall expressions that satisfy all those conditions.

(2marks)

ii. Simplify the Boolean expressions in (i) above, in order that the student can meet the optimal conditions to register for the course. (3marks)

QUESTION THREE (20 MARKS)

- a. .
- i. Simplify the following expression, using

$$f(x, y, z) = \sum (5,6,7 \text{ and } x (3,4))$$

Where x - Don't care.

- ii. Construct a 8 x 1 MUX, using ... 4 x 1 MUX and one 2 x 1 MUX. (2marks)
- iii. Implement a Boolean function using multiplexer.

$$f(A_1A_2A_3) = \sum (3,5,6,7)$$
 Using:-

$$-8 \times 1 MUX$$

- Two 4X1 and one 2 x 1 MUX

- $(3^{1/2}$ marks)
- b. With the help of a neat diagram, design and construct a two bit com.... (4marks)
- c. Figure Q (3c) is an udder..... Explain how it works.. (2marks)
 Insert diagram......

QUESTION FOUR (20 MARKS)

a.	Explain	the	difference	between	the	following	terms	as	used	in	sequential	and	
	combinational logic circuits:- (Use sketches),												
	i. Combinational circuits from sequential circuits.									$\binom{1/2}{2}$ marks)			
	ii. Set-up time from hold time and propagation delay.										$(1^{1/2} \text{marks})$		
b.	Consider the circuit shown in fig Q 4b, below												
	Insert diagram												
c.	Realize a D flip flop from SR flip-flop.								(3marks)				
d.	Determine the resolution for:-												
	i.	An 8-	bit $\frac{D}{A}$ conver	ter							(2marks)		
	ii.	A 12-	bit $\frac{D}{A}$ conver	ter							(2marks)		
e.	Differer	ntiate	between	Unit from	ı logi	c unit.					(2marks)		
	i.	With	the help of	neat sket	tch,	explain bas	ic oper	atio	n of a	n A	LU (Arithr	netic	
]	Logic	Unit).								(2marks)		
	ii.	Desig	n a 3-bit up/	down cou	nter.						(3 ^{1/2} marks)	