

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF _____

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

-----YEAR **SECOND** SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING

EET 214: BASIC CIRCUIT DESIGN

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer Question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION QUESTION ONE (30 MARKS)

1 a) Define

i. Sequential circuits	
ii. Combinational circuits	(4marks)
b) Differentiate between Dynamic and static RAM	(2marks)
c) Convert i) 1001.01 ₂ into decimal	
ii) 5C7 _H to decimal	
iii) 2598.675 ₁₀ to Hexadecimal	(6marks)
d) List three characteristics of an effective memory	(3marks)
e) Using a diagram draw the truth table of an AND gate	(3marks)
f) State DeMorgans theorem	(3marks)
g) Simplify the following function	
F(x,y,) = xy ++ y	(5marks)
h) Realize a 5kflip flop using D flipflop	(4marks)

SECTION TWO: ANSWER ANY TWO QUESTIONS

QUESTION TWO (20 MARKS)

a)	Express the Boolean function F=A + B'C as the sum of miniterms	(7marks)
b)	Using a well labelled diagram, explain the Von Neumann architecture	(13marks)

QUESTION THREE (20 MARKS)

- a) Using NAND gates design an SR flip flop and generate a truth fable, characteristic and an excitation table. (12marks)
- b) From the SR flip flop designed abode, show how a JK flip flop designed above, show how a JK flip flop can be obtained. Generate its truth table, characteristic and excitation table
 (8marks)

QUESTION FOUR (20 MARKS)

a)	Using a well labelled diagram, discuss the memory hierarchy	(13marks)
b)	Using a truth table, prove that $AB + \overline{A}C + BC + AB + \overline{A}C$	(7marks)