

# MURANG'A UNIVERSITY OF TECHNOLOGY SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

### UNIVERSITY ORDINARY EXAMINATION

### 2023/2024 ACADEMIC YEAR

## **SECOND** YEAR **SECOND** SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING

**EET201: ANALOGUE ELECTRONICS** 

**DURATION: 2 HOURS** 

### **INSTRUCTIONS TO CANDIDATES:**

- 1. Answer Question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

### SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION QUESTION ONE (30 MARKS)

|      | a)                                                                                  | A certain P-N junction diode has a leakage current of 1014 A at room t                                         | emperature of  |  |  |  |  |
|------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|----------------|--|--|--|--|
|      |                                                                                     | 27°c and 10 <sup>-9</sup> A at 125°c. The diode is forward blased with a constant – current source             |                |  |  |  |  |
|      |                                                                                     | of 1mA at room temperature. If current is assumed to remain constant,                                          | calculate the  |  |  |  |  |
|      |                                                                                     | junction barrer voltage at room temperature and at 125°c                                                       | (5marks)       |  |  |  |  |
|      | b)                                                                                  | For the circuit in Fig. 1(b) find;                                                                             |                |  |  |  |  |
|      |                                                                                     | i. $I_B$                                                                                                       |                |  |  |  |  |
|      |                                                                                     | ii. I <sub>e</sub>                                                                                             |                |  |  |  |  |
|      |                                                                                     | iii. $I_E$                                                                                                     |                |  |  |  |  |
|      |                                                                                     | iv. $Vcc$ , neglect $V_{BE}$                                                                                   | (5marks)       |  |  |  |  |
|      | c) Using well-labelled diagram, explain the theory of operation of a depletion mode |                                                                                                                |                |  |  |  |  |
|      |                                                                                     | N. channel MOSFET                                                                                              | (5marks)       |  |  |  |  |
|      | d)                                                                                  | An ampli having a gain of 500 without feedback has an overall ne                                               | gative         |  |  |  |  |
|      |                                                                                     | feedback applied which reduces the gain to 100. Calculate the fraction                                         | of output      |  |  |  |  |
|      | voltage feedback. If due to ageing of components, the gain without feedback         |                                                                                                                |                |  |  |  |  |
|      |                                                                                     | 20%, calculate the percentage fall in gain without feedback                                                    | (5marks)       |  |  |  |  |
|      | e)                                                                                  | Calculate the oscillator frequency for a FETHa oseillator (refe                                                | er to fig 1(e) |  |  |  |  |
|      |                                                                                     | d m=0.5mH                                                                                                      |                |  |  |  |  |
|      |                                                                                     | (5marks)                                                                                                       |                |  |  |  |  |
|      | f)                                                                                  | Explain theory of operation of a complementary sy push-pull, class B                                           |                |  |  |  |  |
|      |                                                                                     | Amplifier providing a well-labelled circuit diagram                                                            | (5marks)       |  |  |  |  |
| SECT | 'IOI                                                                                | N TWO: ANSWER ANY TWO QUESTIONS                                                                                |                |  |  |  |  |
| DECI | 101                                                                                 | TWO THIS WELLT TWO QUEDITORS                                                                                   |                |  |  |  |  |
| QUES | TI(                                                                                 | ON TWO (20 MARKS)                                                                                              |                |  |  |  |  |
| a)   | A half-wave vect using silicon diode has a secondary emt of 14.14v(rms) with a      |                                                                                                                |                |  |  |  |  |
|      | res                                                                                 | resistance of $0.2\boldsymbol{\Omega}$ . The diode has a forward resistance of $0.05\boldsymbol{\Omega}$ and a |                |  |  |  |  |
|      |                                                                                     | voltage of 0.7v. If load resistance is $10\Omega$ , determine                                                  |                |  |  |  |  |
|      | i                                                                                   | De load current                                                                                                |                |  |  |  |  |

|                           | ii.                                                                                               | D                                                                                      | Oc load voltage                                                 |          |  |  |  |  |
|---------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------|--|--|--|--|
|                           | iii.                                                                                              | V                                                                                      | Voltage regulation                                              |          |  |  |  |  |
|                           | iv. Efficiency (8marks)                                                                           |                                                                                        |                                                                 |          |  |  |  |  |
| b)                        | Us                                                                                                | Using well- labelled diagrams and waveforms, explain how a 3-phase full wave rectitior |                                                                 |          |  |  |  |  |
|                           | works. (6marks)                                                                                   |                                                                                        |                                                                 |          |  |  |  |  |
| c)                        | c) Find the exact expression of Emittor current in tons of the parameters indicated               |                                                                                        |                                                                 |          |  |  |  |  |
|                           | diagram, for the two-supplybias circuit of fig 2( c )                                             |                                                                                        |                                                                 |          |  |  |  |  |
| QUESTION THREE (20 MARKS) |                                                                                                   |                                                                                        |                                                                 |          |  |  |  |  |
|                           | a) For a N-channel JFET, $I_{Dss} = \$.7 \text{mA}$ , $v_P = 3v$ , $VGs = -1V$ find the value of; |                                                                                        |                                                                 |          |  |  |  |  |
|                           |                                                                                                   | i)                                                                                     | $I_D$                                                           |          |  |  |  |  |
|                           |                                                                                                   | ii)                                                                                    | $G_{mo}$                                                        |          |  |  |  |  |
|                           |                                                                                                   | iii)                                                                                   | $G_{\mathrm{m}}$                                                | (6marks) |  |  |  |  |
|                           | b) For the copitts oscillator circuit shown in Fig.3(b) find the values of;                       |                                                                                        |                                                                 |          |  |  |  |  |
|                           |                                                                                                   | i.                                                                                     | Feedback fraction                                               |          |  |  |  |  |
|                           |                                                                                                   | ii.                                                                                    | Minimum gain to sustain esc                                     |          |  |  |  |  |
|                           |                                                                                                   | iii.                                                                                   | Emitter resister R <sub>E</sub>                                 | (6marks) |  |  |  |  |
|                           | c) For the two –stage RC-coupled low-level audioshown in fig.3( c ) compute following             |                                                                                        |                                                                 |          |  |  |  |  |
|                           |                                                                                                   |                                                                                        |                                                                 |          |  |  |  |  |
|                           |                                                                                                   | i.                                                                                     | Vi                                                              |          |  |  |  |  |
|                           |                                                                                                   | ii.                                                                                    | $A_{v1}$                                                        |          |  |  |  |  |
|                           |                                                                                                   | iii.                                                                                   | $\mathbf{A}_{	ext{v}2}$                                         |          |  |  |  |  |
|                           |                                                                                                   | iv.                                                                                    | $A_v$ in $d_B$ neglect $V_{BE}$ and fake $V_e\!\!=\!\!25mv/I_E$ |          |  |  |  |  |
| QUES                      | STIC                                                                                              | ON FO                                                                                  | OUR (20 MARKS)                                                  |          |  |  |  |  |
| a)                        | The signal input to a small signal amplition consists of 50uw of signal power and 0.5uw           |                                                                                        |                                                                 |          |  |  |  |  |
|                           | of noise power. The amplifier generates an internal noise power of 50uw and has a gain            |                                                                                        |                                                                 |          |  |  |  |  |
|                           | of 20dB. For this compute;                                                                        |                                                                                        |                                                                 |          |  |  |  |  |
|                           | i.                                                                                                | In                                                                                     | nput S/N                                                        |          |  |  |  |  |
|                           | ii.                                                                                               | O                                                                                      | Output S/N                                                      |          |  |  |  |  |
|                           | iii.                                                                                              | N                                                                                      | Nolse factor                                                    |          |  |  |  |  |

iv. Noise figure (7marks)

- b) For the Rc-coupled circuit of fig. 4(b), calculate the lower cut-off frequency
  - i. At  $C_1$
  - ii. At  $C_2$
  - iii. For the amplitier

(6marks)

c) Using a well labelled diagram, Explain how analog electronics are applied in FM
Transmittor system. (7marks)