

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

FIRST YEAR **SECOND** SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN ELECTRICAL AND ELECTRONICS ENGINEERING

EET 108: CIRCUIT THEORY I

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer Question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION QUESTION ONE (30 MARKS)

- a) Define the following terms giving units of each.
 - i. Capacitance (2marks)
 - ii. Resistance (2marks)
- b) State the Faraday's laws of electromagnetic induction (2marks)
- c) Explain how the following faults occurs in a simple cell stating how each can be minimized.
 - i) Local action
 - ii) Polarization (4marks)
- d) Prove that the equipment resistance of number of resistors connected in parallel across a source supply is given by $R = \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_n}\right)^{-1}$ (3marks)
- e) A current I Amperes flows in an iron ring of constant permeability _____, mean circumference (Meters and cross-sectional area Am². The ring is uniformly

______with N turns of a coil. If the reluctance of the ring is s, derive an expression for the inductance L of the coil. (6marks)

- f) The resistance of a coil of aluminium wire at 18°c is 200 Ω. The temperature of the wire is increased and the resistance rise to 240 Ω. If the temperature coefficient of resistance of aluminium is 0.0039/°c at 18°c, determine the temperature to which the coil has risen. (4marks)
- g) For the following circuit, determine

i.	Total capacitance	(3marks)
ii.	Voltage across the 3mF capacitor	(2marks)
iii.	Energy stores in the 3mf capacitor	(2marks)

SECTION TWO: ANSWER ANY TWO QUESTIONS

QUESTION TWO (20 MARKS)

- a) Two parallel rectangular plates measuring 20cm by 40cm carry an electric charge of 0.2_____
 - i. Calculate the flux density (3marks)
 - ii. If the plates are spaced 5mm apart and the voltage between them is 0.25kV,determine the electric field strength (2marks)
- b) The following three impedances are connected in series across a 40v, 20KHZ supply:
 - A resistance of 8*Q*

A coil of inductance 130mH and 5 $\boldsymbol{\Omega}$ resistance

A 10 $\boldsymbol{\Omega}$ resistor in series with a 0.25mf capacitor

Calculate

i.	The circuit current	(3marks)
ii.	The circuit phase angle	(2marks)
iii.	The voltage drop across each impedance	(2marks)
c)	Sketch a labelled diagram of a lec	_ dry cell and explain the purpose of
	i. Manganese dioxide	
	ii. Ammonium chloride	(8marks)

QUESTION THREE (20 MARKS)

a) State

i. Notron's theorem

- ii. Superposition Theorem (6marks)
- b) Determine the currents in each branch in the following network using
 - i. Kirchhoff's laws
 - ii. Superposition theorem (14marks)

QUESTION FOUR (20 MARKS)

- a) An alternating voltage is given by 282.8 sin 314*t volts* Determine
 - i. The r.m.s voltage (2marks)
 - ii. The frequency (2marks)

- iii. The instantaneous value of voltage when t=4ms (2marks)
- b) A mild steel ring has a radius of 50mm and across-sectional area of 400m2. A current of 0.5A flows in a coil would uniformly around the ring and the flux produced is 0.1mWb. If the relative permeability at this value is 200. Determine
 - i. The reluctance of the mild steel
 - ii. The number of turns on the coil. (8marks)
- c) Use Th______ theorem to determine the current flowing and the power dissipated in the 4*Q* resistor shown in the following figure

d)