

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATION FOR EEE, BSc. EEE

EES 301 – ELECTRICAL CIRCUIT THEORY III

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a. Differentiate between the following terms as used in electrical circuit theory.

- i. Driving point functions and transfer function.
- ii. Magnitude and phase frequency response.
- iii. Impedance and frequency scaling

(6marks)

b. ..

- i. List two properties of Brune's positive real functions.
- ii. Check whether the following functions are positive real or not. (6marks)

$$y1_{(s)} = \frac{5(S^2 + 2s + 1)}{S^3 + 2S^2 + 2s + 40}$$

$$y2_{(s)} = \frac{S^3 + 5s}{s^4 + 2S^2 + 1}$$

- c. A series RL low pass filter with R 100S2 and cut off frequency of 1000 rad/sec. It is required to scale the cut off frequency to 5000 rad/sec.
 - i. Sketch the unscaled circuit and obtain the value of L.
 - ii. Determine the scaling constant and use the value to calculate the new values of R and L. (4marks)
- d. From the circuit shown in figure 1 below, draw the magnitude response of the transfer function and deduce the type of filter represented. (6marks)

Insert diagram.....

e. ...

- i. Define the term bode plot and give two advantages of them.
- ii. You are hired as a Research and Design Engineer with Huawei International Limited to design and optimize filters for Safaricom Limited. Your first task is to design a filter corresponding to the following bode magnitude plot. Determine $T_{(S)}$ and sketch the corresponding Bode phase response. (8marks)

Insert diagram.....

SECTION B - ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

a. ..

b.

i.	Define the sensitivity function and explain the importance o	of the sensitivity
	function in an electrical network.	(3marks)
ii.	Derive	(4marks)
iii.	Given that insert	(7marks)
Detern	nine if $P_{(s)} = S^u + 3S^3 + Ss^2 + 2$ is a Hurwitz polynomial.	(6marks)

QUESTION THREE (20 MARKS)

- a. ..
- i. Define the term electrical filter citing two applications of filters.
- ii. List two limitations of passive filters. (5marks)
- iii. For the active filter shown in Figure 3.
- b. Insert diagram.....
 - i. Derive the filter transfer function and determine the type of filter represented.
 - ii. In terms of R_1 , $R_2 C_1$ and C_2 derive the expression for Q, W_0 and H_0 .
 - iii. Given the transfer function below, locate the poles and zeros on S-plane and comment on its stability.

$$T_{(s)} = \frac{S^2 - 4S + 8}{(S^2 + 42 + 8(S^2 + 9S + 18))}$$

QUESTION FOUR (20 MARKS)

- a. Using suitable sketches, discuss the characteristics of a Chebysher filter. (4marks)
- b. Find:
 - i. The order ... of the Butterworth filter needed to satisfy the following low pass filter specifications $2\min = 3S \ dB, W_p = 1000 \text{rad/sec}$ and $W_s = 3500 \ \text{rad/sec}$.
 - ii. For the filter in (i) above, locate the poles on the S-plane
 - iii. Evaluate Q for each pole. (8marks)
- c. ..
- i. Derive the transfer function of network shown in figure .. and show that it is a bilinear network.

Insert diagram....

ii. Further given that $L_i = 0.5H$, $L_2 = 1H$, $R_i = 1052$, and $R_2 = 1250$ and using the transfer function obtained in $C_{(i)}$. Sketch the bode magnitude and phase plots. (8marks)