

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCES

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

FOURTH YEAR SECOND SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN APPLIED STATISTICS WITH PROGRAMMING

AMS 409 – STOCHASTIC PROCESSES II

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a.	Define the following terms				
	i.	Ergodic State	(1 mark)		
	ii.	Transient State	(1 mark)		
	iii.	Period of a state of Markov chains	(1 mark)		
	iv.	Absorbing state	(1 mark)		
b.	Find	the generating function for the sequence			
	{(), 0,0,7,7,7,7,}	(2 marks)		
c.	Let x have a Bernoulli distribution with parameters p and q given by				
	$p_r(X = k) = p_r = p^k q^{1-k}, q = 1 - p, k = 0, 1.$				
	Obtain the probability generating function of X and hence find its mean and variance.				
			(6 marks)		
d.	. Discuss two methods of finding probability mass functions of some independent ra				
	variał	bles.	(4 marks)		
e.	e. Derive birth-death process given that $Z(t)$ is the population size at time t, and t		and t $p_n(t)$ is the		
	proba	bility that the population is of size n at time t.	(6marks)		
f.	Expla	in three properties of a Poisson process	(3 marks)		
g.	Suppose that λ is the rate of occurrence of a poisson process. Find the probability that there				
	will b	e 3 arrivals in (0,4] and 3 arrivals in (2,5] given that $\lambda = 1$.			

(5 marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

a.	Classify the states of the following transitional probability matrix	(10 marks)
	_ 1 1_	

$\frac{1}{2}$	$\frac{1}{2}$
0	$\frac{1}{2}$
$\frac{1}{2}$	0
	$\frac{1}{2}$ 0 $\frac{1}{2}$

b. Using Pure-Birth process difference – differential equation given by

 $p'_{n}(t) = -\lambda_{n}p_{n}(t) + \lambda_{n-1}p_{n-1}(t); n \ge 1 \text{ and } p'_{0}(t) = -\lambda_{0}p_{0}(t)$

Obtain $p'_{n}(t)$ for Yule – Ferry process when $\lambda_{n} = n\lambda$ and hence find its mean and variance (10 marks)

QUESTION THREE (20 MARKS)

- a. Consider a series of Bernoulli trials with probability of success p. Suppose that X denote the number of failures preceding the first success and preceding the second success. Find:
 - The joint pdf of X and Y i. (1 mark)ii. (3 marks)
 - Bivariate probability generating function of X and Y
 - Mean and variance of Y (4 marks) iii. iv. Covariance of X and Y (2 marks)
- b. The difference-differential equation for pure-birth process are

$$p'_{n}(t) = -\lambda_{n}p_{n}(t) + \lambda_{n-1}p_{n-1}(t); n \ge 1 \text{ and } p'_{0}(t) = -\lambda_{0}p_{0}(t); n = 0.$$

Obtain $p'_{n}(t)$ for a non-stationary pure birth process (Poisson process) given that;

$$p_n(t) = \begin{cases} 1 \text{ for } n = 1 \\ 0, \text{ Otherwise} \end{cases}$$

Hence obtain its mean and variance.

QUESTION FOUR (20 MARKS)

The difference-differential equation for simple-birth-death processes are;

$$p'_{n}(t) = -n(\lambda + \mu)p_{n}(t) + (n-1)\lambda p_{n-1}(t) + (n+1)p_{n+1}(t); n \ge 1$$
 and

 $p'_{0}(t) = \mu p_{1}(t)$; n = 0. Obtain $p'_{n}(t)$ for a simple Birth-Death process with

 $\lambda_n = n\lambda$ and $\mu_n = n\mu$ given that $p_n(t) = \begin{cases} 1 \text{ for } n = 1 \\ 0, \text{ Otherwise} \end{cases}$ (20 Marks)

(10 marks)