

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF COMPUTING AND INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

FIRST YEAR **FIRST** SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN SOFTWARE ENGINEERING

SCS 102 – DISCRETE STRUCTURES

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question one and any other TWO Questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A – ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

- a) Using an illustration of a graph, explain the concept of discrete and continuous. (3 marks)
- b) On a straight line two points are given (4,8) and (10,6). Determine the value of 'b' where the value of a = 8 using linear extrapolation. (2 marks)
- c) Consider the following sentences
 - i. $\frac{1}{2}$ is a rational number
 - ii. 2 + 4 = 1
 - iii. How are you doing?
 - iv. $X^2 = 36$
 - v. This sentence is false
- d) Let P be 'Kenya is an island' and let Q be 'sea water contains salt'. Discuss P^Q, PvQ and ~
 P. (3 marks)
- e) Let P, Q and be propositions. Write down truth table of the propositional form
 ((PAQ) V (PV ~R)) (3 marks)
- f) Let P be " π is an irrational number". Find the negation of P, and give some examples of denials of P.

(3 marks)

- g) Show that ((**PVQ**) **V** (**C**~ P) Λ (~ P)) is a tautology for any proposition P and Q. (3 marks)
- h) For any proposition P and Q, use have
 - i. $P \rightarrow Q$ is equivalent to $(\sim Q) \rightarrow (\sim P)$ and
 - ii. $P \rightarrow$ is not equivalent to $Q \rightarrow P$.

Prove both results using truth table. (4 Marks)

- i) Let P, Q and R be propositions. Then proof using a truth table that
 - i. $P \leftrightarrow Q \equiv (p \rightarrow Q) \cap (Q \rightarrow P)$
 - ii. $P \cap (Q \cup R) \equiv (P \cap Q) \cup (P \cap R)$ (6 Marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

- a) In a survey of 500 students of a college, it was found that 49% liked watching football, 53% liked watching hockey and 62% liked watching basketball. Also, 27% liked watching football and hockey, 29% liked watching both basketball and hockey and 28% liked watching both football and basketball and 5% liked watching none of these games. (5 marks)
 - i. How many students like watching all the games?
 - ii. Find the ratio of number of students who like watching only football to those who like watching only hockey.
 - iii. Find the number of students who like watching only one of the three given games
 - iv. Find the number of students who like watching at least two of the given games

Use venn diagram for implementation of your solution. (7 Marks)

- b) Let A, B and C be sets. Proof that $A \cap (BUC) = (A \cap B) U(A \cap C)$ (4 marks)
- c) Show that $P(A)UP(B) \le P(AUB)$ is P(A)UP(B) = P(AUB) in general. Explain.

(4 marks)

			(5 marks)
	i.	Union	
	ii.	Intersection	
	iii.	Difference	
	iv.	Complement	
	v.	Disjoint	
QU	JESTI	ON THREE (20 MARKS)	
a)	Let X,	$Y \in z$. If x and y are both odd, then XY is odd.	(6 marks)
	Pr	oof using	
		i. Direct method	
	i	i. Contradiction method	
	ii	i. Contraposition	
b)	Show	that for all "n" $\in \mathbb{N}$, $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$	(6 marks)
c)	Show	that for all INSRET $\frac{n^3}{3} + \frac{n^5}{5} + \frac{7n}{15}$ is an integer.	(8 marks)

d) Let A and B be two sets. Use Venn diagram to illustrate the following operations on sets.

QUESTION FOUR (20 MARKS)

a)	Let $A = \{1,2,3\}$ and $B = \{a,b\}$. find AXB and BXA.	(2 marks)
b)	Let $A = [0,1]$ and $B = \{1\} \cup [2,3]$ find AxB.	(2 marks)

- b) Let A = [0,1] and $B = \{1\} \cup [2,3]$ find AxB.
- c) Proof that if A and B are nonempty set, then AXB = BXA iff A=B. (2 marks)
- d) Let A, B, C and D be sets, then proof that
 - i. AX (BUC) = (AXB) U (AXC)
 - ii. (AUB) X C = (A X C) U (BXC)
 - iii. $AX(B\cap C) = (A X B) \cap (B X C)$
 - $(A \cap B) XC = (A XC) \cap (B XC)$ iv.
 - $(AXB) \cap (CXD) = (A\cap C) X B\cap D)$ v.
 - $(AXB) U(CXD) \leq (AUC) X(BUD)$ vi.
- e) Let $A = \{1, 2, \{3\}, 4\}$ and $B = \{a, b, c, d\}$. find the domain and range of $\{$, where $R = \{C1, C\}$, $(\{3\}, a), (1, d\} \le A X B.$ (2 marks)

(6 marks)

- f) Let A = {1,2,3,4} and R₁ = {(1,2), (2,3), (1,3)} R₂ = {(1,1), (1,2)} R₃ = {(3,4)}, R₄ = {(1,2), (2,3), (2,1) and $R_5 = \{(1,1), (2,2), (3,3), (4,4)\}$. Decide which relation is reflective, symmetric and transitive. (4 marks)
- g) Let A be the relation on Z given by x R y. iff X-Y is even, show that is an equivalence relation on Z. (2 marks)