

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF COMPUTING AND INFORMATION TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

FIRST YEAR FIRST SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN COMPUTER SCIENCE AND BACHELOR OF SCIENCE IN SOFTWARE ENGINEERING

SCS100: COMPUTER ARCHITECTURE

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A – ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a.	List and explain any three functions of a control unit.	(3 marks)		
b.	Convert AB17 ₁₆ to base 8. Show your workings.	(3 marks)		
c.	Registers are temporary memory locations that enhance the performance of any three and explain their roles.	f CPU. Identify (6 marks)		
d.	Using an example in each case, state any two types of Boolean laws.	(4 marks)		
e.	Design a combination logic circuit that performs arithmetic operation for addi	ng three bits. (7 marks)		
f.	Explain the role of an Instruction Set Architecture (ISA) in the working of a co	omputer. (2 marks)		
g.	Use k-map to simplify the following equation Y= A'B'+A'B+AB	(2 marks)		
h.	If F=A'B'C+A'BC'+AB'C+AB'C, represent the equation using a truth table.	(3 marks)		
SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION				

QUESTION TWO (20 MARKS)

- a. Explain one advantage and one disadvantage of RISC and CISC processor types. (4 marks)
- b. The Arithmetic and Logic Unit (ALU) of a computer performs two main functions. Use an example in each case to explain the functions. (4 marks)
- c. Use the truth table below to design a minimized full adder circuit. (7 marks)

Inputs			Outputs	
А	В	C _{IN}	Sum	Carry
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

d. Convert the following

i.	682_8 in to binary	
----	----------------------	--

ii. $AF3D_{16}$ in to decimal

e. What is virtualization?

(1 mark)

QUESTION THREE (20 MARKS)

a.	Covert	185.6_{10} into IEEE 754 floating point notation. (show your working).	(8marks)		
b.	When	we refer to RAM as volatile memory what does it mean.	(2 marks)		
c.	To im reason	prove performance of a computer, Solid State Disks (SSD) have be do you think have led to this drastic change?	en used. What (3 marks)		
d.	It is b Explai	those without. (2 marks)			
e.	Conve	rt $(x'+y')(x+y)$ to short hand notation.	(3 marks)		
f.	Disting	guish between a thin and fat client as used in desktop virtualization.	(2 marks)		
QU	JESTIC	ON FOUR (20 MARKS)			
a.	Briefly	describe how cache memory works with the CPU.	(2 marks)		
b.	Conve	rt 456_{10} and 598_{10} in to binary and the 2's complement of the sum.	(5 marks)		
c.	Given a Boolean expression X=AB+ABC+AB'C'+AC'.				
	i.	Draw the logic diagram of the canonical function.	(3 marks)		
	ii.	Minimize the expression.	(4 marks)		
	iii.	Draw the logic diagram of the minimized expression.	(2 marks)		
	d. Usiı	(4 marks)			