

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF HUMANITIES AND SOCIAL SCIENCES

DEPARTMENT OF PHYSICAL AND BIOLOGICAL SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2020/2021 ACADEMIC YEAR THIRD YEAR FIRST SEMESTER EXAMINATION FOR, BSc. INDURSTRIAL CHEMISTRY AND ANAYTICAL CHEMISTRY

ACH 312-ORGANIC SPECTROSCOPY

DURATION: 2 HOURS

Instructions to candidates:

- 1. Answer question One and Any Other Two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

Use spectroscopic table attached at the end of paper

Speed of light, $C = 3 \times 10^3 \text{ms}^{-1}$

Avogadro's number, $NA = 6.02 \times 10^{23}$

Planks constant $h = 6.626 \times 10^{-34} JS$

Take atomic mass as follows C = 12, H = 1.0, O = 16.0

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a)	Define the following terms as applied in organic spectroscopy			
	i.	Molecular ion	(2 marks)	
	ii.	Spectrum	(2 marks)	
	iii.	Coupling constant	(2 marks)	
	iv.	Chromophore	(2 marks)	
b)	The wavelength of sodium D line is 389.0 nm. Calculate			
	i.	The frequency in cycles per second	(1 mark)	
	ii.	The wavelength in cm ⁻¹	(1 mark)	
c)	Explain how the labelled fragments are formed (12 marks)			

d) Distinguish between the following pairs as used in organic spectroscopy

A quadrat and a doublet of doublet of doublet in ¹H NMR
Base peak and molecular ion peak
Hypochromic and Bathochromic shift

e) Outline selection rules in electronic transition
(2 marks)
(2 marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

a) Deduce with reasons which among the four structures (i) to (iv) give the following infrared spectrum. (4 marks)

b)	The mass spectrum of h-butyl phenyl ketone, $C_6H_5CO(CH_2)_3CH_3$ show peak	M/Z 162, 110,
	105 and 85 show the formation of these peaks and their formulae.	(4 marks)
c)	Calculate the UV maxima of the following compounds.	(8 marks)

d) The UV spectra for compounds 1 and 2 in ethanol were observed at 237nm and 225 nm respectively. Predict with reasons the UV spectra of these when recorded in water. (4 marks)

QUESTION THREE (20 MARKS)

March the following to their IR spectra place X next to those compounds that do not have a metal. (20 marks)

QUESTION FOUR (20 MARKS)

a) i) State the Beer-Lamberts law and explain the terms. (4 marks)

ii) An \propto - β unsaturated ketone of relative molecular mass 110 has an absorption bond with 1max at 215nm and $\epsilon = 10,000$. A solution of ketone showed absorbance A = 2.0 with 1 cm cell. Calculate concentration of ketone in g/l. (2 marks)

	δ 1HNMR	δ 13CNMR		δ 1HNMR	δ 13CNMR
	2.55(septet, 1H 212.6			2.38 (triplet, 2H	209
	2.10 (singlet- 3H	41.5	E	2.10 (singlet, 3H	45.5
D	1.05 (doublet, 6H	27.2		1.57 (sextet 2H	29.5
		17.8		0.88 (triplet 3H	17.0
					13.5

b) Two compounds (D and E) with the molecular formula $C_5H_{10}O$ have the following

Both compounds have a strong absorption band in $1710-1740 \text{ cm}^{-1}$.

- i. Interpret the spectra and elucidate the structure of the two compounds.
- ii. Make a sketch of each ¹H-NMR.

(10 marks)

c) Calculate 1 max for the following enones

(4 marks)