

MURANG'A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology)

DEPARTMENT: ELECTRICAL ENGINEERING

LEVEL: DIPLOMA

CLASS: EE/P/14DM

UNIT: ELECTRICAL CIRCUIT ANALYSIS

TERM/SEMESTER: I YEAR 2

ACADEMIC YEAR: 2014/2015

UNIT CODE: SEE 1206

DATE: 23RD APRIL 2015 TIME: 2 HOURS

Instructions to candidates

This paper contains FOUR questions

Attempt question 1 and any other two questions

You should have the following for this examination;

- Drawing instruments
- Scientific calculator

Mobile phones are not allowed in examination room.

QUESTION 1

- a) With reference to alternating current, define the following terms:
 - i. Period
 - ii. Frequency
 - iii. Amplitude (6 marks)
- b) A star- connected load consists of three identical coils, each of inductance 159.2 mH and resistance 50Ω . If the supply frequency is 50 Hz and the line current is 3A .Determine
 - i. Phase voltage
 - ii. Line voltage (4 marks)
- c) With the help of a labelled diagram describe the construction of a d.c machine.

(6 marks)

d) With the aid of a diagram, explain the principle of operation of a single phase transformer

(5 marks)

- e) A $30\mu F$ capacitor is connected in parallel with an $80~\Omega$ resistor across a 240 V, 50 Hz supply. Calculate
 - i. The current in each branch
 - ii. The supply current
 - iii. The circuit impedance
 - iv. The power dissipated

(9 marks)

SECTION B

QUESTION 2

- a) A 60 kVA, 1600V/100V, 50Hz, single phase transformer has 50 secondary windings. Determine the:
 - i. The primary and secondary current
 - ii. Number of primary turns
 - iii. Maximum value of the flux

(7 marks)

b) An alternating current varies with time over half a cycle as follows:

Current(A)	0	0.7	2.0	4.2	8.4	8.2	2.5	1.0	0.4	0.2	0
Time(ms)	0	1	2	3	4	5	6	7	8	9	10

The negative half cycle is similar. Plot the curve and determine:

- i. The frequency
- ii. The instantaneous values at 3.4ms and 5.8ms
- iii. The average value
- iv. The r.m.s value

(13 marks)

QUESTION 3

- a) The following three impedances are connected in series across a 40 V, 20 kHz supply: a resistance of 8 Ω , a coil of inductance 130 μ H and 5 Ω resistance and a 10 Ω resistor in series with a 0.25 μ F capacitor. Determine;
 - i. The circuit impedance
 - ii. The circuit current
 - iii. The circuit phase angle
 - iv. Voltage drop across each impedance

(10 marks)

- b) A six-pole lap wound motor is connected to a 250V d.c supply. The armature has 500 conductors and a resistance of 1 Ω . The flux per pole is 20mWb and armature resistance is 40A. Determine
 - i. The speed
 - ii. The torque developed

(6 marks)

c) Derive from first principles an expression for efficiency of a d.c motor. (4 marks)

QUESTION 4

- a) Sketch the terminal voltage/load current characteristics of the following generators
 - i. Series
 - ii. Shunt
 - iii. Separately excited
 - iv. Compound wound

(8 marks)

- b) A compound wound d.c generator is to supply a load of 25kWat 220V. The armature circuit, series field and shunt field resistances are $0.06~\Omega$, $0.04~\Omega$ and $50~\Omega$ respectively. If the voltage drop per brush is 2V, determine the generated e.m.f when the machine is connected in:
 - i. Long shunt
 - ii. Short shunt (8 marks)
- c) A 200kVA rated transformer has a full-load copper loss of 1.5kW and an iron loss of 1kW.Determine the transformer efficiency at full load and 0.85 power factor