

MURANG'A UNIVERSITY OF TECHNOLOGY SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT	OF														
-------------------	----	--	--	--	--	--	--	--	--	--	--	--	--	--	--

UNIVERSITY ORDINARY EXAMINATION 2023/2024 ACADEMIC YEAR YEAR..... SEMESTER EXAMINATION FOR BACHELOR

EET 421 – ELECTROMAGNETICS

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

9	
а.	•

- i. Briefly explain how field (magnetic or electric) phenomenon manifest itself in nature. (2marks)
- ii. Compare Coulomb's Law with Newton's Law of Gravity. (2marks)
- b. With the help of neat sketches, differentiate:-

c. Given Vector $\overline{X}, \overline{Y} \overline{z}$, Determine:-

- i. The curl of a Vector from divergence of a Vector. (1.5marks)
- ii. Monopole from a dipole. (1.5marks)

(1.5marks)

- iii. Dielectric permittivity from permeability of a material.
- i. $\overline{X} \times \overline{y}$ (2marks) ii. $\overline{X} \cdot \overline{y}$ (2marks) iii. $\overline{(X} \times \overline{y}) \cdot \overline{Z}$ (2marks)
- d. .
- i. With the help of diagram, briefly explain image theory. (3marks)
- ii. State Maxwell's equations in integral form. (2marks)
- e. .
- i. Differentiate transverse electric (TE) polarization from Transverse Magnetic TM polarization. (3marks)
- ii. For a dielectric material, which components are:- tangential and which are normal to a boundary. (2marks)
- f. Given Vector \bar{x} from origin is (2, 3, 2) and Vector Y from tip of Vector \bar{x} is (4, 5, 4) Find:

i.	Vector \bar{x} and its magnitude	(2marks)
ii.	The angle between \bar{x} and y-axis	(2marks)
iii.	Vector \bar{y} and its magnitude.	(2marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

- a. What is a conservative field? (2marks)
- b. Two metal spheres with changes of -72mC and +32mC are bought together into contact with each other for a short time. After separation, one of the metal spheres has a charge of -24mC.
 - i. What is the electric charge of the other metal? (4marks)

c. i. ii. iii. iv.	A = 4	How much electric charge was transferred And where was it transferred from? What are the change carriers? two complex numbers, 3j and B = -3-2j ss A and B in Polar Form, find:	(3marks) (1.5marks) (1mark) (2marks) (2marks) (2marks)
QUES	STION	THREE (20 MARKS)	
a.	State A	Ampere's Law.	(2marks)
b.	i. ii. iii.	Determine the magnetic field H, at point (0,05), for a semi concurrent-curveying wire, as shown in fig. Q3b. What will be the value of H at point (0,0,0) How do you conclude the value of H at (0,0,5) and at (000)	ircular section of (2marks)
	Insert	diagram	
c.		ane wave propagating in a lossless medium has an electric field, E - 59, 4Z). Determine:-	$E_x = E_0 \text{ Co}_2 (1.6 \text{ x})$
	i.	Wowe velocity, co	(2marks)
	ii.	Wavelength,	(2marks)
	iii.	Wave impedance for the wave.	(2marks)
	iv.	Dielectric constant.	(2marks)
QUES	STION	FOUR (20 MARKS)	
a.	State 1	Biot – Sarvat's Law	(2marks)
b.	Expre	ss Biot – Sarvat's Law in terms of distributed current sources:-	
	i.	Line currents	(2marks)
	ii.	Surface currents	(2marks)
	iii.	Volume currents	(2marks)
c.	The F	ig. Q4C, below show 3 planer dielectric slabs of equal thickness, b	
		nts as indicated. If E_0 in air makes an angle of 45° with respect to	
	i.	The angle of E in each layer of the slab.	(6marks)

ii.	How do you the angle with permittivity of the medium.
	Insert diagram

d. State Maxwell's time varying equation in integral form. (4marks)