

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

THIRD YEAR **SECOND** SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN HOSPITALITY AND TOURISM MANAGEMENT

AMS 334: STATISTICAL METHODS IN HOSPITALITY AND TOURISM

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a)	State the	e data t	type (d	liscrete	e or co	ntinuou	ıs) of	each o	of the	e follov	ving;			
	i.]	Numbe	er of sh	nare so	ld eacl	h day ii	n the	stock n	nark	et			(1n	nark)
	ii. 7	Гетре	rature	record	led eve	ery half	hour	at wea	ther	statior	1		(1n	nark)
	iii. I	Lifetin	nes of t	televis	ion tuł	bes pro	duced	l by a c	omp	bany			(1n	nark)
	iv.	Yearly	incom	ne of c	ollege	profess	sors						(1n	nark)
b)	The data	a belov	v show	s the	perform	nance of	of 30	studen	ts in	a statis	stics e	examinati	ion	
	72	61	58	66	65	71	72	41	70	83				
	40	52	71	82	46	81	45	57	7.	3 64	Ļ			
	41	62	81	47	56	63	72	40	4	3 5	2			
Us	ing the cl	lasses 4	40 - 49	9, 50 -	- 59, 60) – 69,	70 -	79 and	80 -	- 89, co	onstru	ict		
	i) .	A frequ	iency	distrib	ution t	able							(3n	narks)
	ii) A	A cum	ulative	e frequ	ency c	urve							(3n	narks)
c)	The sun	nmary	statist	ics giv	ven bel	low are	fron	n an an	alys	is of d	ata fr	om a stu	dy c	onducted to
	establis	h whet	her the	varia	ble X a	and Y a	re rel	lated						
	Σ	$\Sigma X = 1$	185,∑	Y = 1	61,∑X	$X^2 = 30$	073,	$\sum XY =$	256	65, <i>n</i> =	10,	$\bar{y} = 13.4$	2, <i>x</i>	= 15.42
	if va	riable	X and	Y are	related	d, fit a s	simpl	e linea	r reg	ressior	n equa	ation of Y	l'anc	d X i.e.
	Y =	a + b	Χ										(4n	narks)
d)	Given the	ne data	below	1										
		2, 3,	7, 8, 1	0										
	Calculat	te the:												
	i)	Fire	st mon	nent										
	ii)	Sec	cond m	nomen	t									
	iii)	Thi	rd mo	ment									(3n	narks)
e)	The dat	a belov	w show	vs the	scores	s obtair	ned by	y 10 B	SC 7	Fourisr	n stu	dents in a	ı sta	tistics exam
	18, 57, 1													
	i) (Calcula	ate the	7^{th} de	cile of	the stu	dents	' mark	S				(2n	narks)
	ii) I	Using a	an assi	umed 1	nean c	of 43, o	calcul	late the	star	ndard d	eviat	ion of the	e stu	dents marks
	((2marl	ks)											
f)	Let A a	nd B be	e any t	wo ev	ents in	the sau	nple	space s	uch	that				
		F	P(A) =	0.53 a	and P(A	AUB) =	= 0.82	2						
	Find	P(B)	if even	nts A a	nd B a	re								
	i) 1	Mutual	ly exc	lusive	events	5							(2n	narks)
	,	Indepe											(2n	narks)
g)	The data	a show						0				-		1
	weig	ght	30-	39	40-	-49	50)-59		60 - 69		70-79		80-89

Compute the Bowley's coefficient of Skewness and interpret your results (4marks)

7

33

freg

12

21

11

4

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

a) The table below shows the results obtained from a study conducted to determine whether variables X and Y are related.

Variable X 78 86 72 82 80 86 84 89 68 71

Variable Y 140 160 134 144 180 176 174 178 128 132

- i. Determine the Pearson's product moment correlation. (5marks)
- Determine the spear man's rank correlation coefficient. (5marks) ii.

b) The number of stories in two selected samples of tall building in Kisumu and Nairobi is as shown below.

Kisui	mu										
55	70	44	36		53	40	31	38		34	
52	32	32	50		63	28	34	32		47	
30	26	29	40		32	44	52	60		32	
Nairo	obi										
61	40	38	32	30	58	40	44	25	30	56	38
36	54	40	36	30	53	39	36	34	33	39	32

Construct a back to back stem and leaft plot and compare the distributions. (10marks)

QUESTION THREE (20 MARKS)

....

a) The data below shows the weight of play group pupils admitted to join Makini School in the year 2024

weight	5 - 9	10 - 14	15 - 19	20 - 24				
freq	12	25	11	9				
Calculate the coefficient of Kurtosis and interpret your results. (5)								

Calculate the coefficient of Kurtosis and interpret your results.

b) The below shows the average cost per kilometre for passage vehicles on a highway per county.

County	Nairobi	Kisumu	Kisii	Nyeri	Kirinyaga
Average cost	247	197	185	195	200

(5marks)

Construct and analyse a poveto chart.

c) The below shows the results of an experiment conducted to determine the time it takes for an individual to contact the virus if exposed.

Days (x)	0	1	2	3	4	5
No. of	7	12	15	17	14	10
individuals						

Determine:

i. The probability that an individual will take at most four days to contract the virus.

(2marks)

ii. The probability that an individual will take at least 2 days to contract the virus.

(2marks)

d) Let event X and W be events in the sample space such that

Р	P(X) = 0.82 P(W) = 0.47	
Р	V(XnW) = 0.37	
Determ	nine:	
i.	P(XuW) =	(3marks)
ii.	P(X'n W')	(3marks)

QUESTION FOUR (20 MARKS)

a) The table below shows the distribution of students' weight in a first year statistics class

weight	45 - 49	50 - 54	55 - 59	60 - 64	65 - 69	70 - 74	75 - 79
Freq.	7	14	18	11	5	9	4

Calculate

- i. The mean weight of the students (use an assumed mean of 62). (3marks)
- ii. The standard deviation of the students' masses using an assumed mean of 62.

(5marks)

(10marks)

b) A study was conducted on a group of students to determine whether there is a relationship between their weights and their corresponding blood pressure

weight	52	62	71	49	67	81	90	101
Blood pressure	102	134	163	97	142	173	194	142

If the study showed that the weight and blood pressure of the students are related

Fit a simple linear regression of

Y on X
$$Y = a + bX$$

What is the weight of the students whose blood pressure is 167? (2marks)