

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE, APPLIED AND HEALTH SCIENCES

DEPARTMENT OF MATHEMATICS AND ACTUARIAL SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2023/2024 ACADEMIC YEAR

THIRD YEAR **SECOND** SEMESTER EXAMINATION FOR BACHELOR OF SCIENCE IN MATHEMATICS AND ECONOMICS

AMS 331: PROBABILITY AND STATISTICS IV

DURATION: 2 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer Question one and any other two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a) A fair die is tossed 12 independent times. Determine the probability of the following configuration (4 marks)

					(T marks)	
Face	1	2	3	4	5	6
No. of	2	3	0	2	4	1
occurrence						

- b) Define the following
 - i. Probability generating function (2marks)
 - ii. Characteristic function
 - iii. Let x be a random variable with generating form P(s) find the generating functions of x+1 (2marks)
- c) A bank teller serves customers standing in the queue one by one. Suppose that the service time x_1 for customer I has mean $E(x_1) = 2$ minutes and $var(x_1) = 1$ assuming that the service time for different bank customers are independent. Let y be the total time the bank teller spends serving 50 customers. Find P(90 < y < 110) (4marks)
- d) Let $X \sim Bin(n, p)$. Using Markovs inequality find an upper bound $P(x \ge \alpha n)$ where $p(<\alpha < 1)$. Hence evaluate the bound for $p = \frac{1}{2}$ and $\alpha = \frac{3}{4}$ (4marks)
- e) Let $y = (y_1, y_2, y_3)$ be a random vector which is normally distributed, $N_3(\mu, \varepsilon)$ with mean vector and covenance matrix given below

$$\mu = \begin{pmatrix} 1 \\ -1 \\ 3 \end{pmatrix} and \varepsilon = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 2 & 3 \\ 0 & 3 & 10 \end{pmatrix}$$

Find the joint distribution given

 $Z_1 = y_1 + y_2 + y_3 \quad \text{and } Z_1 = 3y_1 + y_2 - 2y_3 \tag{5marks}$ f) Two random variables x and y have a joint pdf

$$f(x,y) = \begin{cases} kx, & x \le y \le x \le \\ 0, & elsewhere \end{cases}$$

i. Evaluate the constant k

(3marks)

(2marks)

ii. Obtain the marginal distribution of x and y and show that these random variables are not independent (4marks)

SECTION TWO: ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

- a) Let $X \sim Bin(n, p)$. Use Chebychev's inequality to find an upper bound on $P(x \ge \alpha n)$ where $p(<\alpha < 1)$. Hence evaluate the bound for $p = \frac{1}{2}$ and $\alpha = \frac{3}{4}$ (4marks)
- b) Suppose that x has a binomial distribution with parameter n and p. Obtain the pgf of x and hence find the mean and variance of x. (10marks)
- c) Two tetrahedral dice are rolled together once. If x is the number facing up; prove that $p(x-7| \ge 3) \le 35/54$ (6marks)

QUESTION THREE (20 MARKS)

- a) State and proof the weak law of a large numbers
- b) If the variable x_p assumes the value $2^{p-2logp}$ with probability p=1,2,3..... Examine if the weak law of large numbers holds (4marks) At a particular gas station, gasoline is stocked in a bulk tank each week. Let random variable x denote the proportion of tank's capacity that is stocked in a given week and let y denote the proportion of the tanks capacity that is sold in the same week. Note that the gas station cannot sell more than what was stocked in a given week, implying that the value of y cannot exceed the value of X. Possible pdf x and y is given by

$$f(x) = \begin{cases} 3x, & x \le y \le x \le 1\\ 0, & elsewhere \end{cases}$$

- i. Obtain the joint cdf of x and y at the point $(x, y) = (\frac{1}{2}, \frac{1}{3})$ (5marks)
- ii. Find the probability that the amount of gas sold is less than the half the amount that is stocked in a given week (5 marks)

QUESTION FOUR (20 MARKS)

- a) State and proof the central limit theorem.
- b) Find the characteristic function of the exponential random variable x_1 where

$$f(x) = \begin{cases} e^{-ax}, & x \ge 0, a > o \\ 0, & elsewhere \end{cases}$$

Hence compute the mean and variance

(10Marks)

(10marks)

Page **3** of **3**

(6marks)