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SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION 

QUESTION ONE (30 MARKS) 

a) A fair die is tossed 12 independent times. Determine the probability of the following 

configuration         (4 marks) 

Face 1 2 3 4 5 6 

No. of 

occurrence 

2 3 0 2 4 1 

b) Define the following 

i. Probability generating function     (2marks) 

ii. Characteristic function      (2marks) 

iii. Let x be a random variable with generating form P(s) find the generating 

functions of x+1        (2marks) 

c) A bank teller serves customers standing in the queue one by one. Suppose that the service 

time    for customer I has mean E(  )    minutes and var(  )    assuming that the 

service time for different bank customers are independent. Let y be the total time the bank 

teller spends serving 50 customers. Find  (        )          (4marks) 

d) Let      (   )  Using Markovs inequality find an upper bound  (    )    where 

 (     )  . Hence evaluate the bound for p= 
 

 
 and  =  

  

 
   

 (4marks) 

e) Let  (        )be a random vector which is normally distributed,   (   )with mean 

vector and covenance matrix given below 

  (
 
  
 
)      (

   
   
    

) 

  Find the joint distribution given  

            and                   (5marks) 

f) Two random variables x and y have a joint pdf   

 (   )  {
          
           

 

i. Evaluate the constant k       (3marks) 

ii. Obtain the marginal distribution of x and y and show that these random variables 

are not independent         (4marks)   

 
SECTION TWO: ANSWER ANY TWO QUESTIONS IN THIS SECTION 

QUESTION TWO (20 MARKS) 

a) Let      (   )  Use Chebychev’s inequality to find an upper bound on  (    )    where 

 (    )   . Hence evaluate the bound for p= 
 

 
 and  =  

  

 
    (4marks) 

b) Suppose that x has a binomial distribution with parameter n and p. Obtain the pgf of x and 

hence find the mean and variance of x.      (10marks) 

c) Two tetrahedral dice are rolled together once. If x is the number facing up; prove that 

 (      )               

 (6marks) 
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QUESTION THREE (20 MARKS)  

a) State and proof the weak law of a large numbers      (6marks) 

b) If the variable    assumes the value          with probability p=1,2,3…… 

Examine if the weak law of large numbers holds     (4marks) 

At a particular gas station, gasoline is stocked in a bulk tank each week. Let random variable 

x denote the proportion of tank’s capacity that is stocked in a given week and let y denote the 

proportion of the tanks capacity that is sold in the same week. Note that the gas station 

cannot sell more than what was stocked in a given week, implying that the value of y cannot 

exceed the value of X. Possible pdf x and y is given by 

 ( )  {
          
           

 

i. Obtain the joint cdf of x and y at the point (x, y) = (  ⁄    ⁄ )   (5marks) 

ii. Find the probability that the amount of gas sold is less than the half the amount that is 

stocked in a given week       (5 marks)   

QUESTION FOUR (20 MARKS) 

a) State and proof the central limit theorem.      (10Marks) 

b) Find the characteristic function of the exponential random variable    where 

 ( )  {
            
           

 

Hence compute the mean and variance      (10marks) 

      


