

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ENGINEERING TECHNOLOGY

TVET EXAMINATION

2023/2024 ACADEMIC YEAR

FIRST YEAR **TERM ONE** EXAMINATION FOR DIPLOMA IN MECHANICAL TECHNOLOGY (PRODUCTION) LEVEL 6

ENG/0S/ME/CC/3/06/A – APPLY MECHANICAL SCIENCE PRINCIPLES

DURATION: 3 HOURS

INSTRUCTIONS TO CANDIDATES:

- 1. Answer ALL questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A - (40 MARKS)

1. Explain the difference between a scalar and a vector quantity giving one example of each.

		(4 marks)
2.	State the following Law of Forces.	
	i. Triangle of Forces	
	ii. Polygon of Forces	
	iii. Parallelogram of Forces	(6 marks)
3.	State any	
	i. Three engineering applications of friction	
	ii. Two methods of reducing friction in machines.	(5 marks)
4.	State three general conditions of equilibrium.	(3 marks)
5.	Define the following terms as applied to forces acting on a point.	
	i. Equilibrant.	
	ii. Coplanar forces	
	iii. Resultant	
	iv. Static	
	v. Dynamic	(5 marks)
6.	State the principles of moments.	(2 marks)
7.		
	a. Define coefficient of friction	(1 mark)
	b. State four laws of dry friction	(4 marks)

SECTION B (60 MARKS)

Attempt ALL questions.

- 8. .
- a. Use the Cosine and Sine rules to determine the magnitude and direction of the resultant of a force of 8KN acting at an angle of 50° to the horizontal and a force of 5 KN acting at an angle of -30° to the horizontal. (10 marks)

b. Find graphically the magnitude and direction of the resultant of four coplanar forces which are acting at a point on a body as follows:
Force W, 60N acting horizontally to the left.
Force X, 50N inclined at 45° clockwise to force W.
Force Y, 30N incline at 105° clockwise to force X.
Force Z, 40 N inclined at 90°, clockwise to force Y. (10 marks)

9.

- a. A force of 540N acting parallel to a plane inclined at 20° to the horizontal is required to just move a body of mass 61.3kg up the plane. Find
 - i. The coefficient of friction between the surfaces.
 - ii. The force parallel to the plane required to drag the body down the plane at a steady speed. (10 marks)
- b. A uniform beam, 4m long is simply supported at two points A and B, point A being 0.5m from the left hand end and point B, 1.5 from right hand end. The beam carries loads of 600N at the left hand end, 800 N at its centre and 400N at the right hand end. Determine the magnitude of the support reactions at A and B. (10 marks)

10.

- a. State the following Newton's Law of Motion.
 - i. First Lawii. Third Law (4 marks)
- b. Define the following terms as used in Linear motion and state their SI units.
 - i. Displacement
 ii. Acceleration
 iii. Velocity (6 marks)
- c. Show that the displacement of a body under linear motion is given by $S=ut+\frac{1}{2}at^2$ (5 marks)

- d. A lorry of mass 10Mg reaches a speed of 63km/hr in 20s, starting from rest with uniform acceleration. It travels 2km at this speed and is then brought to rest in a distance of 125m. Determine:
 - i. The momentum at 63km/hr.
 - ii. The accelerating and braking forces required. (5 marks)