

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE APPLIED AND HEALTH SCIENCES

DEPARTMENT OF PHYSICAL AND BIOLOGICAL SCIENCE

UNIVERSITY ORDINARY EXAMINATION

2020/2021 ACADEMIC YEAR

THIRD YEAR **FIRST** SEMESTER EXAMINATION FOR BACHELOR OF EDUCATION SCIENCE

UNIT CODE: ACH 309

UNIT TITLE: COORDINATION CHEMISTRY

DURATION: 2 HOURS

Instructions to candidates:

- 1. Answer question One and Any Other Two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

 (a) Draw (i) Trans and cis isomers of Pt(NH₃)₂ Cl₂ 	(2 marks)
(ii) Mer and Fac isomer $\left[[Mo (thf)_3 Cl_3] \right]$	(2 marks)
(b) Explain the meaning of the following terms	
(i) Ligand	(2 marks)
(ii) Coordination – compound.	(2 marks)
(iii) Polydentate ligand	(2 marks)
(iv) Heteroleptic complexes.	(2 marks)
(c) Write the formula of the following coordination complexes.	
(i) Magnesium tetrahydroalluminate(III) .	(2 marks)
(ii) Hex aqua- u-trishydroxido iron(III) sulphate.	(2 marks)
(iii) Tetrabromido cuprate (II).	(2 marks)
(iv) Carbonato penta ammine Cobalt (III) Chloride	(2 marks)
(d) Give the systematic home of the following complexes	(6 marks)
(i) $\left[(CO(H_2 NCH_2 CH_2 NH_2)_3) \right]_2$ (SO ₄) ₃	
(ii) $(NH_4)_2 \left(Ni (C_2O_4)_2 (H_2O)_2 \right)$	
(iii) $\left(O(NO_2)(NH_3) \right) \left\{ O(NH_3)(NO_2) \right\}$	

(e) What is the coordination number of the Fe and Au atoms in.

(4 marks)

(i)
$$K_3 \left[\text{Fe} \left(C_2 O_4 \right)_3 \right]$$

(ii) $K \left[\text{Au} \left(\text{CN} \right)_2 \left(\text{SCN} \right)_2 \right]$

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

- (a) A pink solid has the formula CoCl₃.5NH₃. H₂O. A solution of this salt is also pink and Rapidly gives three moles of AgCl on titration with excess silver nitrate solution. when the pink solid is heated, it loses 1 mole of water to give a purple solid with the same ratio of NH₃: Cl: CO. The purple solid on dissolution and titration with excess AgNO₃, Produces two moles of AgCl
 - (i) Deduce the structure of the two octahedral complexes and provide IUPAC name for each one of them. (4 marks)
 - (ii) Write equation for the reaction between the pink solid and excess silver nitrate. (2 marks)
 - (iii) Give two possible hydrate isomer of the pink solid present in its aqueous solution. (2 marks)
- (b) Draw orbital energy level diagram for the configuration of d-electrons of the complexes

$$\operatorname{Fe}\left((\operatorname{OH}_{2})_{6}\right)^{3+},\left(\operatorname{Fe}\left(\operatorname{CN}\right)_{6}\right)^{3-}$$
(6 marks)

(c) Compare magnetic properties of $\left(Fe(H_2O)_{6} \right)^{3+}$ with those $\left[Fe(CN)_{6} \right]^{3-}$

(c) Distinguish between high spin and low spin complexes. (2 marks)

QUESTION THREE (20 MARKS)

(a) Using suitable examples, explain what is meant by monodentate, bidentate ambidentate ligand.
(b) (i) Highlight the assumptions of Valency bond theory(VBT)
(ii) Predict hybridization of the following complexes.
(3 marks)

$$\left[\text{Fe} (\text{H}_2\text{O})_6 \right] 3+ \text{ and } \left[\text{Fe} (\text{CN})_6 \right]^{3-}$$
 $\text{Fe} = 26$

(c) Explain using valence bond theory (VBT) why $[N1 (CN)_4]^{2-}$ (square planar geometry) is diamagnetic and $[NiCl_4]^{2-}$ tetrahedral geometry paramagnetic. (8 marks)

QUESTION FOUR (20 MARKS)

(a) Give the basic principles of crystal field theory (CFT) pointing out clearly its merits and weakness.	(10 marks)
(b) Give the necessary conditions for occurrence of geometrical isomers in	
(i) Square planar complexes.	(2 marks)
(ii) Octahedral complexes.	(2 marks)
(c) List four factors that affect stability of coordination complexes.	(4 marks)
(d) Δ_0 of $\left(\text{Mn} (\text{H}_20)6^{-3} \right)^{-3}$ is known from electron spectrum to be 21, 000cm ⁻¹ the pairing energy of Mn(iii) is 28,000 cm ⁻¹ . Predict whether the complex is high	1 or low spin.

(2 marks)