

MURANG'A UNIVERSITY OF TECHNOLOGY SCHOOL OF PURE APPLIED AND HEALTH SCIENCES

UNIVERSITY ORDINARY EXAMINATION

2020/2021 ACADEMIC YEAR

FIRST YEAR ONE SEMESTER EXAMINATION FOR BACHELOR OF EDUCATION SCIENCE

UNIT CODE: APH: 102

UNIT TITLE: MATHEMATICS FOR PHYSICS I

DURATION: 2 HOURS

Instructions to candidates:

- 1. Answer question **One** and Any Other **Two** questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

(a) Simplify
$$(x^2y^3z)$$
 (x^3yz^2) then evaluate when $x = 1$, $y = 2$, $Z = 3$ (4 marks)

(b) Solve
$$2t^3 - \log t = \log 16 + \log t$$
. (4 marks)

- (c) State two causes of the following types of errors that ,may in laboratory work
 - (i) Random errors (2 marks)
 - (ii) Systematic errors (2 marks)
- (d) $x = \frac{20t^3}{3} \frac{23t^2}{2} + 6t + 5$ represents the distance in metres moved by a body in time t seconds. Determined the velocity and acceleration at the start. (4 marks)

(e) Evaluate
$$\frac{1-i}{1+i}$$
 (4 marks)

- (f) Determine the angle between the forces $\mathbf{F_1} = 3\mathbf{i} + 4\mathbf{j} + 5\mathbf{k}$ and $\mathbf{F_2} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ (5 marks)
- (g) Prove the trigonometric identity $\frac{\tan x + \sec x}{\sec(1 + \frac{\tan x}{\sec x})} = 1$ (5 marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

- (a) The rate at which a body cools is given by $\theta = 250e^{-0.05t}$ where the excess temperature of a body above its surrounding at time t minutes is θ °C. Plot a graph showing the natural decay curve for the first hour of cooling, hence determine
 - (i) Temperature after 25 minutes. (4 marks)
 - (ii) The time when the temperature is 195°C. (4 marks)
- (b) The time of oscillation t of a pendulum is given by $t = 2\pi \sqrt{\frac{L}{g}}$ where L is the length of the Pendulum and g is free fall acceleration. Determine

(i)
$$\frac{\partial \mathbf{t}}{\partial \mathbf{L}}$$
 (3 marks)

(ii)
$$\frac{\partial t}{\partial g}$$
 (3 marks)

	given by $h = 4d - d^2$. Use integration to determine	
(i) (ii)	The mean height of the missile from $d=0$ to $d=4km$ The r.m.s value from $d=0$ to $d=4km$.	(3 marks) (3 marks)
QUE	STION THREE (20 MARKS)	
	(a) (i) Define the scalar or dot product of two vectors	
	$\mathbf{\underline{A}} = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \text{ and } \mathbf{B} = b_1 \mathbf{j} + b_2 \mathbf{j} + b_3 \mathbf{j}$	(2 marks)
	(ii) Calculate the work done by a force $F = (-5\mathbf{i} + \mathbf{j} + 7\mathbf{k})$ N when its point of applic moves from the point $(-2\mathbf{i} - 6\mathbf{j} + \mathbf{k})$ m to the point $(\mathbf{i} - \mathbf{j} + 10\mathbf{k})$ m.	ation (4 marks)
	(b) (i) Determine the vector product of two vectors $A = a_1 \mathbf{i} + a_2 \mathbf{j} + a_3 \mathbf{k} \text{ and } B = b_1 \mathbf{i} + b_2 \mathbf{j} + b_3 \mathbf{k}$	(2 marks)
(iii)	Calculate the velocity vector and its magnitude for a particle rotating about the z-axi velocity of $(3\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ rad/s when the position vector of the particles is at $(\mathbf{i} - 5\mathbf{j} + 4)$ (6marks)	_
(c) T	Three bulbs are chosen at random from 15 bulbs of which 5 are defective. Find the probab	ility that
(i)	None is defective	(2 mark)
(ii) Exactly one is defective	(2 marks)
(ii	i) At least one is defective.	(2 marks)
QUE	STION FOUR (20 MARKS)	
(a) S	olve the complex equation $(2+i)(3-2i) = a+bi$	(4 marks
(b)An Deter	alternating voltage of 400V, 80Hz is connected across an impedance ($50 - i200$ mine) ohms.
(i)	The resistance.	(1 mark)
(ii	· •	(3 marks)
`	ii) The magnitude of the impedancev) The phase angle of the impedance	(2 marks) (2 marks)
(v	, <u> </u>	(2 marks)
`	student performed an experiment by first measuring the mass of a sample that was	` ,
red deteri	quired for use in the experiment. His measured value was 78.9 g. From the given mine	information,
(i)	The absolute error.	() marks)
(i) (ii)	The absolute error. The relative error	(2 marks) (2 marks)
(iii)	The percentage error.	(2 marks)

(c) The vertical height h km of a missile varies with horizontal distance d km and is