

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF PURE & APPLIED SCIENCES

DEPARTMENT OF PHYSICAL & BIOLOGICAL SCIENCES

UNIVERSITY POSTGRADUATE EXAMINATION

2018/2019 ACADEMIC YEAR

SECOND YEAR **SECOND** SEMESTER EXAMINATION FOR M.SC. CHEMISTRY

ACH 615 - ADVANCED ANALYTICAL CHEMISTRY I

DURATION: 3 HOURS

DATE: APRIL 25 2019

TIME: 2.00 - 5.00 PM

Instructions to candidates:

- 1. Answer **ANY FOUR** questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

QUESTION ONE (25 MARKS)

- (a) Differentiate the terms precise and accurate. (2marks)
- (b) List the key steps in a chemical analysis (5marks)
- (c) Using a hypothetical HPLC chromatogram sketch, show how the lipids present in a chocolate sample can mask the signal of caffeine as an analyte of interest. (2marks)
- (d) Find the molarity of 37% wt% HCl (density of HCl =1.19/cc) (3marks)
- (e) A solution contains 12.6*ppm* calcium nitrate dissolved, which dissociates into the nitrate and calcium ions. Find the concentration of ions in moles/litre. (2marks)
- (f) The density of water varies with temperature and this can be computed by the formula:

Density (g/mL) =
$$a_0+a_1T + a_2T^2 + a_3T^3$$
. Where T is temperature (°C), $a_0 = 0.99989$, $\mathbf{a}_{1} = 5.3322$, $\mathbf{a}_{2} = -7.5899 \times 10^{-6}$, $\mathbf{a}_{3} = 3.671 \times 10^{-8}$

Using MS Excel spreadsheets compute the density of water for the following temperatures (°C), 0, 5, 10, 15, 20, 25, 30, 35 (11 marks)

(Export your spreadsheet into word then save it indicating your Reg. number, then print)

QUESTION TWO (25MARKS)

- (a) Differentiate interpolation from extrapolation with respect to a calibration curve.(3marks)
- (b) State any three requirements of a lab notebook record. (3marks)
- (c) Using any data in the appendix explain the relationship between tolerance and calibration. (3marks)
- (d) Using the error computation formula in the appendix solve the problem below:

We can measure the concentration of HCl solution by reaction with pure sodium carbonate. $2H^+ + Na_2CO_3 \longrightarrow 2Na^+ + H_2O + CO_2$.

A volume of 27.35 ± 0.04 ml of HCl solution was required for complete reaction with 0.9674 ± 0.009 g of Na_2CO_3 (FM.105.988 ± 0.001).find the molarity of the HCl and its absolute uncertainty. (10marks)

(e) Lithium isotope ratios are important to medicine, geology, chemistry astrophysics.

Measurements of ⁶Li/ ⁷Li ratio in a standard reference material are given here. Do the two methods give statistically equivalent results? (6marks)

Method I	Method II
0.082601	0.08183
0.082621	0.08186
0.082589	0.08205
0.082617	0.08206
0.082598	0.08215
0.08208	

QUESTION THREE (25 MARKS)

- (a) State whether the following errors are systematic or random.
 - (i) A 25ml transfer pipette consistently delivers 25.03±0.009ml. (1mark)
 - (ii) Four consecutive 200μL injections of a solution into a GC were made and the area of a particular peak was 4383, 4410, 4401, 4390 units. (1mark)
- (b) Find the absolute and percentage relative uncertainty and express each answer with a reasonable number of significant figures $9.23 (\pm 0.2) 4.1 (\pm 0.1) = ?$

(4marks)

- (c) Volatile compounds in human blood serum were measured by trap GC-MS. For quality control, serum was periodically spiked with a constant amount of 1,2-dichlorobenzene and the concentration (ng/g = ppb) was measured. Using the data in the appendix and MS Excel
 - (i) Find the mean and standard deviation for the following spiked data and prepare a control chart. (8marks)
 - (ii) State whether or not the observations meet each of the following criteria for stability of a control chart. (2marks)
- (d) Consider the following equilibrium:

1.
$$Ag^{+} + Cl^{-} \longrightarrow AgCl (aq) k = 2x10$$

2. $AgCl (a) + Cl^{-} \longrightarrow AgCl_{2}^{-} k = 9.3 \times 10^{-1}$
3. $AgCl (s) \longrightarrow Ag^{+} + Cl^{-} k = 1.8 \times 10^{-10}$

(i) Calculate the numerical value of the equilibrium constant for the reaction (4marks)

- (e) Calculate the concentration of AgCl(aq) in equilibrium with undissolved solid AgCl(s) (3marks)
- (f) State any two sources of experimental errors in a titration. (2marks)

QUESTION FOUR (25 MARKS)

(a) Using EXCEL, Spreadsheets solve the problem. Presented are Mass spectrum signals of CH₄ in Hydrogen.

(b)

CH ₄ vol %	0	0.062	0.122	0.246	0.971	1.921
Signal mV		47.5	95.6	193.8	812.5	1671.9

(i) Subtract the blank from all the signals.

(2marks)

(ii) Using the method of LEAST SQUARES find the slope and intercept and their uncertainties. (8marks)

(b) Low concentrations of Ni-EDTA near the detection limit gave the following counts in an MS Measurement: 175, 104, 164, 193, 131, 189, 155, 133, 159, 176.

Ten measurements of a blank hold a mean of 45 counts. A sample of 100μM, Ni-ETDA gave 1797 counts. Estimate the detection limit. (5marks)

(c)Traces of toxic synthetic hexachlorohexanes in the North Sea sediments were extracted by a known process and by two new procedures (A and B) and measured by chromatography.

Method	Concentration found	Std dev	replicates	
Conventional	34.4	3.6	6	
Procedure A	42.9	1.2	6	
Procedure B	51.1	4.6	6	

- I- Is the standard deviation of procedure B significantly is different from that of the conventional procedure or not? (3marks)
- **II** Is the mean concentration found by procedure B significantly different from that of the conventional procedure? (3marks)
- (d) What is the relationship between:
 - (i) Standard deviation and accuracy
 - (ii) Standard deviation and precision

(4marks)

QUESTION FIVE (25 MARKS)

- (a) For numbers 116.0, 97.9, 114.2, 106.8, 108.3:
 - (i) Find Mean, standard deviation, range and 90% confidence interval for the mean (*You may use a calculator and NOT MS excel*) (10marks)
 - (ii) Using the Q-test decide whether the value 97.9 should be discarded. (3marks)
- (b) Suppose 1 litre of solution is prepared such that it contains 0.0010mL Br₂(aq), 0.0050ml IO₃, 0.002mL Br,1.0 ml H⁺ and excess solid I₂ and that the reaction equation is:

$$I_2$$
 (s) + 5Br₂ (aq) + 6H₂O \Longrightarrow 2IO₃ + 10 Br + 12H + k = 1x10⁻¹⁹

Calculate the concentration when the solution comes to equilibrium:

- (i) By considering stoichiometry. (5marks)
- (ii) By Excel spreadsheets. (5marks)
- (c) Why end point is considered a point past the equilibrium? (2marks)