

MURANG'A UNIVERSITY OF TECHNOLOGY

SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

UNIVERSITY ORDINARY EXAMINATION

2018/2019 ACADEMIC YEAR

THIRD YEAR SECOND SEMESTER EXAMINATION FOR, DIPLOMA IN AUTOMOTIVE/PLANT ENGINEERING

PAS 1302 - ENGINEERING MATHEMATICS VI

DURATION: 2 HOURS

DATE: 11/12/2018

TIME: 9 – 11 A.M.

Instructions to candidates:

- 1. Answer question One and Any Other Two questions.
- 2. Mobile phones are not allowed in the examination room.
- 3. You are not allowed to write on this examination question paper.

SECTION A: ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE (30 MARKS)

a. Solve the following Homogenous Equations;

i.
$$\frac{dy}{dx} = \frac{x+5y}{4x}$$
 (6 Marks)

ii.
$$\frac{dy}{dx} = \frac{x^2 + y^2}{xy}$$
 (8 Marks)

(4 Marks)

(8 Marks)

b. Solve using integrating factor

i.
$$\frac{dy}{dx} - 10y = e^{4x}$$

c. Solve the following second order differential equations

i.
$$\frac{d^2y}{dx^2} + 6 \frac{dy}{dx} + 9y = 0$$
 (3 Marks)

ii.
$$\frac{d^2y}{dx^2} + 10 \frac{dy}{dx} + 25y = 0$$
 (3 Marks)

iii. Find;
$$\int -1\{\frac{5S+1}{S^2-S-20}\}$$
 (6 Marks)

SECTION B – ANSWER ANY TWO QUESTIONS IN THIS SECTION

QUESTION TWO (20 MARKS)

a. Solve $\frac{dx}{dt} - 2x = 4$ given that $t = 0$ and $x = 1$	(5 Marks)
b. Determine the Laplace transform of the following functions	
i. $\sin 4t$	
ii. e^{7t}	(2 Marks)
c. $\int -1 \left[\frac{9S-16}{s^2-2S} \right]$	(5 Marks)
d. Solve the Laplace Equation	
$2\dot{y} - 6y + 3x = 0$	
$3\dot{x} - 3x - 2y = 0$	

Given that t = 0, x = 1 and y = 3

QUESTION THREE (20 MARKS)

a. Find the general solution given;

i.
$$\frac{d^2y}{dx^2} - \frac{5dy}{dx} + 6y = 48$$
 (6 Marks)

ii.	$\frac{d^2y}{dx^2} + \frac{6dy}{dx} + 9y = 4e^{5x}$	(9 Marks)
iii.	Integrate by parts given, $x^2 e^{5x} dx$	(5 Marks)

QUESTION FOUR (20 MARKS)

a. Obtain the Fourier Series for the periodic function	(10 Marks)
--	------------

$$f(x) = \begin{cases} -k \ when \ -\pi < x < 0 \\ +k \ when \ 0 < x < \pi \end{cases}$$

b. Find the Fourier Series for the function defined by;

(10 Marks)

 $f(x) = -1 -\pi < x < 0$ $f(x) = 0 0 < x < \pi$ $f(x) = f(x+2\pi)$