

MURANG'A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology)

DEPARTMENT: ELECTRICAL AND ELECTRONIC ENGINEERING DIPLOMA IN ELECTRICAL AND ELECTRONIC ENGINEERING MAIN EXAMINATION

CLASS: MRUC/EEP/14DM

LEVEL: DIPLOMA

SEMESTER: 1

ACADEMIC YEAR: 2014/15

YEAR OF STUDY: 2

UNIT: ANALOGUE ELECTRONICS II

UNIT CODE: SEE1202

DATE: 24TH APRIL 2013 TIME: 2 HOURS

Instructions to candidates

This paper contains four 4 Questions

Attempt question one (1) and any other two (2) questions

You should have the following for this examination;

- Drawing instruments
- Scientific calculator
- > NO MOBILE PHONES ARE ALLOWED WITHIN THE EXAMINATION ROOM!!!!!!!

Question 1 (30 marks)

a).	Explain why it is desirable to mid-point bias class A amplifier	[2mks]
b).	State the primary disadvantage of using an amplifier with swampi	ing resistor [3mks]
c).	Explain the cause of crossover distortion in a class B transistor an	
d).	Show that the maximum theoretical efficiency for a class A ampli	ifier is 25%. [4mks]
e).	Explain what determine the class of operation of an amplifier.	[2mks]
f).	Explain why is class C operation more efficient than class A oper amplifier circuits.	ation in transistor [2mks]
g).	List the two operating states of the class D amplifier?	[2mks]
h).	State the purpose of amplifier coupling network?	[2mks]
i).	With the aid of diagrams, explain the operation of a turned class (C amplifier [6mks]
j).	List four characteristics of an ideal operational amplifier.	[3mks]
k).	Name the type of current that flows through n-channel JFET?	[1mrks]
Question 2 (20 marks)		
a).	State the bias conditions that must exist for a transistor to operate	as an amplifier [2mks]
b).	Determine the following DC values for the amplifier in figure 1	
	V_B , V_E , I_E , I_C , V_C , and V_{CE}	[6mks]
c).	Determine the following AC values for the amplifier in figure 1	
	$R_{in(base)}$, R_{in} , A_v , A_i , A_p	[10mks]

d). plot the AC load line

[2mks]

Question 3 (20 marks)

- a). Name two factors that determine the voltage gain of a CE amplifier [2mks]
- b). State two operating states of the class D amplifier? [2mks]
- c). A certain FET common source (CS) amplifier has gm of 2600μ S, R_L of $22k\Omega$ and R_D of $12k\Omega$. $v_{gs}=v_{in}=40$ mV. Determine the voltage gain and v_{out} for both load and unloaded amplifier. [8mks]
- d). Describe how changes in V_{GS} are related to changes in I_D for a n-channel JFET amplifier [2mks]
- e). In the circuit figure 2, let $R_1=5k\Omega$, $R_f=20k\Omega$ and $v_i=1V$. A load resistor of $5k\Omega$ is connected at the output. Calculate [6mks]
 - i) Output voltage, Vo
 - ii) Closed loop gain, A_{CL}
 - iii) The load current, i_L

Figure 2

Question 4 (20mrks)

- a). Explain why class C amplifiers unsuitable for voice and music amplification?

 3mks
- b). List three advantages of class C amplifiers 3mks
- c). For the circuit of figure 3, determine bandwidth (BW), $i_{c(sat)}$, power dissipated by the transistor P_{Dif} $v_{ce(sat)}$ =0.2V, Maximum power load P_{L} , tank circuit power P_{tank} , maximum source power P_{DC} , and the efficiency. **14mks**

