

MURANG'A UNIVERSITY COLLEGE

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology)
SCHOOL OF ENGINEERING AND TECHNOLOGY

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DIPLOMA IN ELECTRICAL POWER SYSTEMS ENGINEERING MAIN EXAMINATION

LEVEL: DIPLOMA

CLASS: MRUC/EEP/14DS

SEMESTER: II

ACADEMIC YEAR: 2014/2015

UNIT: ANALOGUE ELECTRONICS I

UNIT CODE: SEE 1105

DATE: 22ND APRIL 2015 TIME: 2 HOURS

Instructions to candidates:

This paper contains FOUR (4) questions.

Answer **QUESTION ONE** and **ANY OTHER TWO** questions.

You should have the following for this examination;

- Answer booklet
- Scientific calculator

NB: NO MOBILE PHONES ALLOWED IN THE EXAMINATION ROOM.

Section A

QUESTION ONE (compulsory)

- (a) Distinguish between drift current and diffusion current. (2 marks)
- (b) Define the term ripple factor. Show that the ripple factor of a full wave rectifier is 0.48. (5 marks)
- (c) Using biasing circuits, briefly explain the following:
 - i. Forward bias
 - ii. Reverse bias (6 marks)
- (d) Briefly describe the construction of an Enhancement only-MOSFET. (4 marks)
- (e) Explain how the drain current is controlled in n-channel JFETs. (2 marks)
- (f) State two advantages of FETs over bipolar transistors. (2 marks)
- (g) Explain any three uses of cathode ray oscilloscope (CRO). (3 marks)
- (h) The diagram below shows a bipolar transistor in the base bias (fixed bias) operating mode. Given that β =100, V_{cc} =10 V, R_b =910K, R_c = 4.7k and V_{be} =0.7V, calculate:
 - I. Base current, Ib.
 - II. Collector current, Ic.
 - III. Collector voltage, V_c.

(6 marks)

Section B

QUESTION TWO

- (a) Use the energy band theory to distinguish between conductors, semi-conductors and insulators (9 marks)
- (b) Determine the bias current I_D for the circuit shown below. Take V_{DD} = +16 V, R_{G1} = 2.1 M Ω , R_{G2} = 270 k Ω , R_D = 2.4 k Ω , R_S = 1.5 k Ω , I_{DSS} = 8 mA, V_P = -4 V.

(8 marks)

(c) Using first principles, show that $\beta = \alpha/1 - \alpha$.

(3 marks)

QUESTION THREE

- (a) Define the following terms:
 - i. Q-point
 - ii. Hall effect
 - iii. Carrier lifetime (3 marks)
- (b) Draw a bridge rectifier circuit and explain how it works. (7 marks)

- (c) Draw the collector characteristics of a CE transistor configuration and show all operating regions. State the application of the transistor in each region. (6 marks)
- (d) Determine the drain current (I_D) and transconductance (g_m) of an n-channel JFET having a pinch-off voltage, $V_P = -4V$ and drain-source saturation current $I_{DSS} = 12mA$ at a gate-source voltage, $V_{GS} = 0V$. (4 marks)

QUESTION FOUR

(a) Calculate the dc bias voltage V_{ce} and collector current I_c for the circuit shown below. Take $V_{cc} = +22$ V, $R_1 = 39$ k Ω , $R_2 = 3.9$ k Ω , $R_c = 10$ k Ω , $R_e = 1.5$ k Ω and $\beta = 140$. (10 marks)

- (b) Define the following terms:
 - i. Breakdown voltage
 - ii. Peak inverse voltage

(2 marks)

- (c) A 5.0v stabilized power supply is required from a 12v D.C. input source. The maximum power rating of the Zener diode is 2W. Using the circuit diagram below of a Zener diode stabilizer, calculate:
 - i. The maximum current flowing in the Zener diode, IZ.
 - ii. The value of the series Resistor, R_{S.}
 - iii. The load current, I_L if a load resistor of $1k\Omega$ is connected across the Zener diode.
 - iv. The total supply current, Is.

