

## **MURANG'A UNIVERSITY COLLEGE**

(A Constituent College of Jomo Kenyatta University of Agriculture and Technology)

**DEPARTMENT: ELECTRICAL ENGINEERING** 

LEVEL: CERTIFICATE

CLASS: MRUC EE/P/14CM

TERM/SEMESTER: III

**ACADEMIC YEAR: 2014/2015** 

UNIT: ELECTRICAL PRINCIPLES II

UNIT CODE: EE0111

DATE: 22<sup>ND</sup> APRIL 2015 TIME: 2 HOURS

## Instructions to candidates

This paper contains FOUR (4) questions, and TWO SECTIONS

Section A is Compulsory and attempt any Two Questions from Section B

Answer all the questions

You should have the following for this examination;

- Drawing instruments
- Scientific calculator

Mobile Phones are not allowed in Exam Room.

## **SECTION A**

- a) Explain the following Kirchoffs laws
  - i Kirchoffs Current Law
  - ii.. Kirchoffs Voltage Law

(2mks)

b) For the Network shown below, calculate the following



I Supply Voltage

II Power developed across  $3\Omega$  Resister

III  $I_1$ ,  $I_2$ ,  $I_4$ ,  $I_6$  and  $I_8$  (8mks)

- (c) The current flowing through a resistor of  $5k\Omega \pm 0.4\%$  is measured as 2.5mA with an accuracy of measurement of  $\pm 0.5\%$ . Determine the nominal value of the Voltage across resistor and its accuracy. (4 mks)
- (d) Define the following terms:
  - i. Unidirectional waveform
  - ii. Alternating waveform
  - iii. Period, T.
  - iv. Frequency
  - v. Amplitude
  - vi. Instantaneous value
  - vii. Peak-to-peak value (7 mks)
  - (e) An alternating current completes 5 cycles in 8mS. What is its frequency? (3 mks)
  - (f) An alternating voltage is given by  $V = 75\sin(200\pi t 0.25)$  volts. Find:
    - (i) The periodic time, T (ii) The peak-to-peak value (iii) The r.m.s value
    - (iv) The phase angle in degrees and minutes relative to  $75\sin 200\pi t$ . (6 mks)

## **SECTION B**

2(a) Determine the capacitive reactance of a capacitor of 10µF when connected to a

circuit of frequency 20 kHz.

(4 mks)

- (b) A coil of inductance 159.2mH and resistance  $20\Omega$  is connected in series with a  $60\Omega$  resistor to a 240V, 50Hz supply. Determine:
  - i. The impedance of the circuit
  - ii. The current in the circuit
  - iii. The circuit phase current
  - iv. The p.d across the  $60\Omega$  resistor

(16 mks)

- 3. The current in a.c circuit at any time t seconds is given by  $i = 120\sin(100\pi t + 0.36)$  amperes. Find:
  - i. The peak value, the periodic time, the frequency and phase angle relative to  $120\sin 100\pi t$ . (10mks)

ii. The value of the current when t=8m (5mks)

iii. The time when the current first reaches 60A. (5 mks)

4(a) Define the term Q – factor.

(2mks)

- (b) A capacitor C is connected in series with a  $40\Omega$  resistor across a supply voltage of Frequency 60Hz. A current of 3 A flows and the circuit impedance is  $50\Omega$ .
  - (i) The value of the capacitance, C.
  - (ii) The supply voltage
  - (iii) The phase angle between the supply voltage and current
  - (iv) The p.d across the resistor
  - (v) The p.d across the capacitor
- (vi) Draw the phasor diagram

(18 mks)